Measuring Spin-lattice Relaxation Time (T_1)

IU NMR Facility-March, 2014

Spin-lattice relaxation (T_1) also known as longitudinal relaxation is the mechanism by which excited magnetization returns to equilibrium on the z-axis. Inversion recovery pulse sequence (Figure 1), is the mostly widely used experiment for measuring T_1 . Compared to other methods, this experiment is robust and relatively tolerant to imperfect pulse width calibration; however, it is recommended that one performs pulse width (pw90) calibration before running T_1 experiment.

The d1 delay in the pulse sequence should be set to ~ 5 * the longest T_1 of interest in the molecule; this requires that one has to estimate the T_1 . Setting the d1 too short will give shorter T_1 's than the "actual" values; whereas too long d1 will result in longer experiment time. The d2 delay (tau) is arrayed; thus a series of spectra are collected with different tau values. The data is then fit to an exponential recovery curve to get the T_1 values.

Step by Step Procedure for Running T₁ Experiment on our Instruments

- 1. In VnmrJ click on the Experiment tab and choose the nuclei of interest, e.g. Proton. From your calibrated pw90 (see instructions on pw90 calibration), enter the correct pw90 (e.g. pw90=10).
- 2. Enter the macro **T1setup**. Answer the questions that appear by entering the minimum expected T_1 , the maximum expected T_1 and the experiment time in hours. You may run a quick experiment in order to know the approximate T_1 values. Once the approximate T_1 values are known, you can then run an experiment that will give more accurate T_1 's.
- 3. Set the appropriate receiver gain (gain). This should be set from a quick (nt=1) PROTON spectrum with a 90° pulse angle. Remember the "autogain" option is not available for arrayed experiments.
- 4. Start the experiment by typing au, ga, go or by clicking on acquire.

Processing T₁ Experiment

- 1. Type wft to Fourier transform the data.
- 2. Display the last spectrum which has all the peaks almost fully recovered by typing **ds**(#), where # is the spectrum number, and phase the spectrum.

Note: If you had 10 values of d2 arrayed, you will have 10 spectra. To see all the spectra, set wc=200 and sc=50 and type wft dssa dssl('value'). This will display the spectra in the format shown in the example below.

- 3. Set a threshold for the desired peaks. Type **dll** (**d**isplay line listing) to display a list of the peaks to be used for the fit. The list can be seen in the Text Output panel under the Process tab
- 4. Type **fp** (**f**ind **p**eaks). This command will find the peak intensities of the selected peaks in all the spectra. To get the intensities of say lines 5 and 6 in the line listing, type fp(5,6).
- 5. Type **t1** or **t1s** to fit the data; the results will be displayed in the Text Output panel of the Process tab. The **t1** command gives more detailed information about the fitting whilst the **t1s** command gives a shorter output of the T_1 values and the error associated with each value. See example of an output of the **t1s** command below.

Index	freq(ppm)	intensity
1	7.25443	15.5051
2	7.23563	39.2769
3	7.21732	34.8624
4	7.16288	52.9271
Expo	nential dat	a analysis:
Expo Peak	nential dat T1	a analysis: error
Expo Peak 1	nential data T1 3.573	a analysis: error 0.007605
Expo Peak 1 2	nential dat T1 3.573 3.586	a analysis: error 0.007605 0.005975
Expo Peak 1 2 3	nential data T1 3.573 3.586 3.582	a analysis: error 0.007605 0.005975 0.01006

Optional Steps

6. To see how good the data fitting on the exponential recovery curve is, type **expl** and enter. To see only one curve type **expl**(#), where # is the number you want to display.

NOTE: To delete a data point from the data use for the fitting, use the **dels**(#) command (**del**ete spectrum). The **dels** command deletes the spectra selected from the file fp.out (the output of fp). After typing **fp**, type **dels**(#), where # is the number of the selected spectrum you want to remove, e.g. dels(4) will delete spectrum number 4 and dels(5,9) will delete spectra 5 and 9. The deleted spectra can be restored by rerunning the fp command.

- 7. The curves can be plotted (paper copy) by typing **pexpl page**.
- 8. To print the T_1 values, type **printon t1s printoff** or **printon t1 printoff**. Once again using **printon t1 printoff** will print the detailed fitting for each peak which you probably don't need. Therefore use **printon t1s printoff** which will only print the T_1 values and the error associated with each value.

Some Things to Consider when Measuring T_1

- 1. Concentration of sample, T_1 values depends on concentration.
- 2. The choice of solvent. For the same sample, using different solvents will give different T_1 's.
- 3. The temperature at which the measurement is done. Changing the temperature will change the T_1 values.

- 4. Dissolved oxygen which is paramagnetic will reduce T_1 . Performing about 3 cycles of freeze-pump-thaw will give more accurate T_1 values. The freeze-pump-thaw is especially invaluable if experiments like NOESY and ROESY are to be performed.
- 5. Relaxation is magnetic field dependent. For the same sample, the T_1 obtained from i500 will be different from that obtained from i400.