Spin echo

$$
1 / 2 \pi l_{x}-t-\pi l_{y}=t
$$

t: as needed, not correlated with 1/J.

Functions: 1. refocusing; 2. decoupling.

- Chemical shift evolution is refocused by the spin-echo.
- Heteronuclear J-couplings evolution are refocused by a spin-echo. Because only one spin experiences a 180° pulse.
- Homonuclear couplings evolution are not refocused by a spin-echo. Because both spins experiences a 180° pulse.
- It's also used for decoupling $\mathrm{H}^{1}-\mathrm{N}^{15}$ by refocusing the H^{1} magnetization.

Hahn echo

In 1950, Erwin Hahn first detected echoes in NMR, he applied two successive 90° pulses separated by a short delay time. This was further developed by Carr and Purcell who used a 180° refocusing pulse to replace the second pulse. Spin echoes are sometimes also called Hahn echoes.

Hahn, E.L. (1950). "Spin echoes". Physical Review. 80: 580-594.
Carr, H. Y.; Purcell, E. M. (1954). "Effects of Diffusion on Free Precession in Nuclear Magnetic Resonance Experiments". Physical Review. 94: 630-638.

Advantages:

1. Baseline distortions can be removed. (it's originally introduced by Rance and Byrd.)
2. Water suppression was significantly improved due to the refocusing properties of the 180° pulse, which reduces the effect of inhomogeneous broadening at the base of the residual water peak.

2D NOESY

After the final $\left(90^{\circ}\right)_{x}$, a Hahn echo sequence $\left(-\Delta_{1}-\pi I_{y}-\Delta_{2}\right)$ can be added for improvement of flatness of baseline.

JR-NOESY: NOESY with a jump-return observe pulse

Fhacuan 6.55 Comparison of NOESY spatra acquired from $\mathrm{H}_{2} \mathrm{O}$ solution in
which whelent

- Much more peaks near the water peak can be shown up than presat method. $\bullet \Delta$ delay (~ 100 us) and the length of the last pulse need to be optimized.

Relayed NOESY

Figure 6.58 Comparison of sections of NOESY (left) and relhyed NOESY
(right) spectra. Both experiments were performed under identical conditions (right) spectra. Both experiments were performed under Identical conditions except for the mixing period, which included 27 ms of DIPSI-2re isotropic
mixing in the relayed NOESY. Wak coherent irradation was used to
uppress the solvent before the experiment and during the 100 -ms NOE mixing period.
Relayed NOESY peaks outlined by boxes indicate sequential $\mathrm{H}^{\mathrm{N}-1} \mathrm{H}$ NOEs Relayed NOESY peaks outlined by boxes indicate sequential ${ }^{1} \mathrm{H}^{\mathrm{N}} \mathrm{D}^{\prime} \mathrm{H}^{\mathrm{N}}$ NOEs
between residues in the β-sheet of ubiquitin that are weak or not observed in the conventional NOESY experiment. The greater intensity allows sequential
assigmments to be made even if sequential ' H ' resonances are dogenerate (as is the case for Hises and Leut9). The labels denote residue numbers of the amide
protons contributing to each crose. protons contributing to cach cross paak.

For sequential assignment purpose, not for NOE distance information.

INEPT - Insensitive Nucleus Enhanced by Polarization Transfer

INEPT sequence: transfer of population differences from ${ }^{1} \mathrm{H}$ to $\mathrm{X}\left(\mathrm{X}:{ }^{13} \mathrm{C}\right.$, ${ }^{15} \mathrm{~N}$ etc. ${ }^{1} \mathrm{H}$ and X are J-coupling interaction), (by inversion of populations of proton, \rightarrow changing populations of spin \mathbf{X}). It can enhance signal intensity of X by $\gamma_{\mathrm{H}} / \gamma_{\mathrm{X}}\left({ }^{13} \mathrm{C}, \sim 4 ;{ }^{15} \mathrm{~N}, \sim 10\right)$, and is widely used in NMR experiments.

Refocused INEPT and Product operator analysis: - right hand rule

${ }^{13} \mathrm{C}$

$$
\begin{aligned}
& 1 / 2 \pi \mathrm{I}_{\mathrm{x}}-\mathrm{t}-\pi\left(\mathrm{I}_{\mathrm{x}}+\mathrm{S}_{\mathrm{x}}\right)-\mathrm{t}-1 / 2 \pi\left(\mathrm{I}_{\mathrm{y}}+\mathrm{S}_{\mathrm{x}}\right) \\
& -\tau-\pi\left(\mathrm{I}_{\mathrm{x}}+\mathrm{S}_{\mathrm{x}}\right)-\tau
\end{aligned}
$$

after INEPT, get

$$
\text { If } \tau=1 /(4 \mathrm{~J}), \quad-2 \mathrm{I}_{\mathrm{z}} \mathrm{~S}_{\mathrm{y}}
$$

$$
\begin{gathered}
+\mathrm{S}_{\mathrm{x}} \cos (\pi \mathrm{~J} \tau) \cdot \\
\sin (\pi J \tau)
\end{gathered}
$$

In-phase component

Reverse INEPT --- the reverse transfer is achieved.

${ }^{1} \mathrm{H}$

$$
\mathrm{t}=1 /\left(4^{* 1} \mathrm{~J}_{\mathrm{CH}}\right)=1 /\left(4^{*} 212 \mathrm{~Hz}\right)=1.18 \mathrm{~ms}
$$

In real 2D or 3D expt., the first 90 pulse on the ${ }^{13} \mathrm{C}$ is not needed because the antiphase magnetization is already present after t 1 evolution, the reverse INEPT looks like the following in HSQC:

HSQC - Heteronuclear Single-Quantum Coherence

HSQC product operator analysis:

Here is the end of t_{1}.

PEP-HSQC keep this term too, increase sensitivity by up to $\sqrt{ } 2$.
$\underline{1} / 2 \pi\left(\mathrm{I}_{\mathrm{x}}+\mathrm{S}_{\mathrm{x}}\right)-\tau-\pi\left(\mathrm{I}_{\mathrm{x}}+\mathrm{S}_{\mathrm{x}}\right)-\tau$

The chemical shift of spin S cosine modulates the amplitude of peak I.

1. HSQC and HMQC provide single-bond heteronuclear shift correlations, the correlation data are equivalent for both.
2. Historically, HSQC is favored by biological community, and presents ${ }^{1} \mathrm{H}$ ${ }^{15} \mathrm{~N}$ correlations in protein molecules; HMQC is favored by chemical community, and presents ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ correlations in small organic molecules.
3. Both HSQC and HMQC have the following $\mathbf{3}$ feathers:

- From known proton assignments, get to know the correlated heteronucleus assignments.
- Proton peaks disperse according to the heteronucleus shift.
- Can identify diastereotopic geminal pairs.

4. Only difference between HSQC and HMQC is during t_{1} period:

- HSQC, only heteronulear transverse SQ magnetization ($-2 I_{z} S_{y}$) evolves, - HMQC, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ MQ coherence $\left(-2 \mathrm{I}_{\mathrm{x}} \mathrm{S}_{\mathrm{y}}\right)$ evolves.

5. In HSQC, homonuclear ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ couplings do not influence heteronuclear X $\left(\mathrm{S}_{\mathrm{y}}\right)$ magnetization evolution \rightarrow signals do not contain homonuclear ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ couplings along $\mathrm{f}_{1} \rightarrow$ improve resolution in $\mathrm{f}_{1} \rightarrow$ this is the principle advantage of HSQC over HMQC for small organic molecules. But HSQC use more pulses, especially 180° pulses on heteronuclears \rightarrow promoting intensity losses from pulse miscalibration, rf inhomogeneity...

PEP-HSQC --- "Preservation of Equivalent Pathways" developed by Rance and coworkers

After the first INEPT, $I_{z} \rightarrow-2 I_{z} S_{y}$, after t_{1} evolution ($\left.t_{1} / 2-\pi\left(I_{x}+K_{x}\right)-t_{1} / 2\right)$, $-2 I_{z} S_{y} \rightarrow 2 I_{z} S_{y} \cos \left(\Omega_{s} t_{1}\right)-2 I_{z} S_{x} \sin \left(\Omega_{s} t_{1}\right)$; these two orthogonal terms can be preserved, and sensitivity can be improved by a factor up to $\sqrt{ } 2$. When processing these kinds of 2D or 3D spectra, one should choose "Rance-Kay" as yMODE or zMODE in nmrPipe process macro.

S3T : spin-state-selective coherence transfer

| I spin: | $180^{\circ}{ }_{x} \quad 180^{\circ}{ }_{x}$ |
| :--- | ---: | ---: |
| S spin: | $90^{\circ}{ }_{x}-\mathrm{t}-180^{\circ}{ }_{\mathrm{x}}-\mathrm{t}-\mathrm{90}^{\circ}{ }_{\mathrm{y}}$ |

$$
t=1 /\left(4 \mathrm{~J}_{\text {IS }}\right)
$$

The $\mathrm{S}^{3} \mathrm{CT}$ element can convert ZQ and DQ coherences to SQ coherence.

